(51) MПК *C04B* 28/26 (2006.01) *C04B* 111/20 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2012126925/03, 27.06.2012

(24) Дата начала отсчета срока действия патента: **27.06.2012**

Приоритет(ы):

(22) Дата подачи заявки: 27.06.2012

(45) Опубликовано: 10.11.2013 Бюл. № 31

(56) Список документов, цитированных в отчете о поиске: RU 2426707 C1, 20.08.2011. RU 2370468 C1, 20.10.2009. RU 2312086 C1, 10.12.2007. RU 2243952 C1, 10.01.2005. RU 2433853 C1, 20.11.2011. GB 1153299 A, 11.05.1965. CN 102418308 A, 18.04.2012.

Адрес для переписки:

190031, Санкт-Петербург, Московский пр., 9, ПГУПС, патентный отдел

(72) Автор(ы)

Сватовская Лариса Борисовна (RU), Масленникова Людмила Леонидовна (RU), Бабак Наталья Анатольевна (RU), Мархель Наталья Викторовна (RU)

(73) Патентообладатель(и):

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" (RU)

Z

N

(54) ТЕРМОИЗОЛЯЦИОННАЯ МАССА

(57) Реферат:

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий, предназначенных для теплоизоляции тепловых печных агрегатов и энергетического оборудования с температурой эксплуатации до 1150°C. Технический результат повышение прочности. Термоизоляционная содержит масса огнеупорную кембрийску глину, глину, формоотход - отход от сталелитейного производства на основе кварцевого песка, доломит и череп, совместно молотые до остатка на сите 0,08 не более 1%, жидкое Γ/cm^3 , стекло плотностью 1,4-1,5 отсев строительных отходов от разборки зданий с модулем крупности Мкр=2,7, на 80% состоящий из боя тяжелого бетона на гранитном щебне, при следующем соотношении компонентов, мас.%: жидкое стекло 28,0-30,0, указанный отсев 50,0-52,0, кембрийская глина 7,5-8,5, огнеупорная глина 3,5-4,5, указанный формоотход 3,5-4,5, доломит - 3,0-3,3, череп -1,0-1,2. 1 пр., 2 табл.

7

2497773

⊃ 2 **CO4B** 28/26 (2006.01)

(51) Int. Cl.

JN

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(21)(22) Application: 2012126925/03, 27.06.2012

(24) Effective date for property rights: 27.06.2012

Priority:

(22) Date of filing: 27.06.2012

(45) Date of publication: 10.11.2013 Bull. 31

Mail address:

190031, Sankt-Peterburg, Moskovskij pr., 9, PGUPS, patentnyj otdel

(72) Inventor(s):

Svatovskaja Larisa Borisovna (RU), Maslennikova Ljudmila Leonidovna (RU), Babak Natal'ja Anatol'evna (RU), Markhel' Natal'ja Viktorovna (RU)

RU⁽¹¹⁾ 2 497 773⁽¹³⁾ C1

(73) Proprietor(s):

Federal'noe gosudarstvennoe bjudzhetnoe obrazovatel'noe uchrezhdenie vysshego professional'nogo obrazovanija "Peterburgskij gosudarstvennyj universitet putej soobshchenija" (RU) 刀

N

4 9

(54) THERMO-INSULATING MASS

(57) Abstract:

FIELD: chemistry.

SUBSTANCE: invention relates to building materials and can be applied for producing articles, intended for thermo-insulation of thermal furnace units and energy equipment with temperature of exploitation to 1150°C. Thermo-insulating mass contains Cambrian clay, fireproof clay, form-waste-waste from steel-casting production based on quartz sand, dolomite and crock, milled together to residue on sieve 0.08 not more than 1%, liquid glass with

density 1.4-1.5 g/cm³, riddling of building wastes from dismounting of buildings with module of coarseness $\rm M_{co}$ =2.7, on 80% consisting of broken heavy-weight concrete on granite macadam, with the following component ratio, wt %: liquid glass 28.0-30.0, said riddling 50.0-52.0, Cambrian clay 7.5-8.5, fireproof clay 3.5-4.5, claimed form-waste 3.5-4.5, dolomite - 3.0-3.3, crock 1.0-1.2.

EFFECT: increased strength.

1 ex, 2 tbl

Настоящее изобретение относится к области строительных материалов, в частности к термоизоляционным массам, предназначенным для теплоизоляции тепловых, печных агрегатов и энергетического оборудования с температурой изолируемой поверхности до 1150°C.

Известна термоизоляционная масса, (RU №2370468, C04B 28/26, 18/14, 14/10, 35/66, 111/40, бюл. №29, опубл. 20.10.2009) при следующих соотношениях компонентов, мас.%: жидкое стекло плотностью 1,4-1,5 г/см³ - 30,5-37,0, гранулированный доменный шлак с модулем крупности $M_{\rm кp}$ =2,0-2,8-45,0-48,0, кембрийская глина - 12,7-15,0, стеклобой - 0,7-0,9, череп - 1,0-1,2, гранитные отсевы - 1,8-2,2, доломит - 1,8-2,2.

Недостатком такой термоизоляционной массы является низкая прочность.

Наиболее близкой к заявляемой является термоизоляционная масса (RU №2426707, C04B 28/26, 18/14, 35/66, 111/20, бюл. №23, опубл. 20.08.2011) при следующих соотношениях компонентов, мас.%: жидкое стекло плотностью 1,4-1,5 г/см³ - 32,0-37,0, гранулированный доменный шлак с модулем крупности $M_{\rm kp}$ =2,0-2,8 - 46,0-48,0, кембрийская глина - 7,0-8,0, огнеупорная глина - 3,5-4,0, формоотход - 3,5-4,0, череп - 0,8-1,0, доломит - 2,2-3,0.

Недостатком такой термоизоляционной массы является низкая прочность.

20

30

35

Настоящее изобретение направлено на создание новой термоизоляционной массы с повышенной прочностью и одновременной утилизацией промышленных отходов.

Поставленная техническая задача достигается тем, что термоизоляционная масса, содержащая кембрийскую глину, огнеупорную глину, череп, доломит, и формоотход отход от сталелитейного производства на основе кварцевого песка, совместно молотые до остатка на сите 0.08 не более 1%, жидкое стекло плотностью 1.4-1.5 г/см³, дополнительно содержит отсев строительных отходов от разборки зданий с $M_{\rm kp}$ =2.7, на 80% состоящий из боя тяжелого бетона на гранитном щебне, при следующем соотношении компонентов, мас.%:

жидкое стекло плотностью 1,4-1,5 г/см 3	28,0-30,0
указанный отсев строительных отходов от разборки зданий	50,0-52,0
кембрийская глина	7,5-8,5
огнеупорная глина	3,5-4,5
указанный формоотход	3,0-4,5
доломит	3,0-3,3
череп	1,0-1,2.

В качестве связующего выбрано жидкое стекло $Na_2SiO_3*nH_2O$ (ГОСТ 13078-81, ТУ 113-08-00206457-28-93), изготавливаемое из растворимого силиката натрия.

В качестве заполнителя и отвердителя используется техногенный продукт - отсев строительных отходов от разборки зданий с $M_{\rm kp}$ =2,7 на 80% представленный боем тяжелого бетона, в состав которого входит гранитный щебень и цементная составляющая (гидросиликаты и алюмосиликаты кальция и магния), также в состав отсева входит бой кирпича (силикаты и алюмосиликаты кальция), небольшое количество боя стекла и выгорающей органики - щепы и полистирола.

Кембрийская глина - легкоплавкая, полукислая, низкодисперсная, с низким содержанием крупнозернистых включений, насыпная плотность 1450 кг/м³, интервал спекания 50-100°С. Огнеупорная глина представлена латненской глиной (месторождение ст. Латное Воронежской обл.), которая отличается повышенным содержанием плавней и высокой степенью измельчения частиц, часть которых имеет коллоидальный характер. Данные химического анализа глин представлены в

таблице 1.

10

15

30

45

50

Формоотход является отходом от сталеплавильного производства, на 98% состоящий из кварцевого песка с остатками частично не выгоревшей органики и жидкого стекла. Возможно небольшое присутствие окалины.

								Таблица 1
Химический состав кембрийской и латненской глин, мас.%								
Глина	SiO_2	TiO ₂ +Al ₂ O ₃	Fe_2O_3	CaO	MgO	K ₂ O+Na ₂ O	SO ₃	П.п.п.
кембрийская	62,83	17,29	6,64	1,24	2,73	4,5	0,54	4,26
латненская	47,4	36,7	0,9	0,4	0,04	0,11	-	11,5

Доломит - $CaMg(CO_3)_2$ - минерал группы карбонатов, по химическому составу двойной карбонат кальция и магния: $CaCO_3 \cdot MgCO_3$, содержит примеси глины, известняка. При температуре 600-700°C происходит диссоциация $MgCO_3$, при 830-900°C происходит диссоциация $CaCO_3$.

Череп представляет собой бой обожженных керамических изделий и состоит в основном из кварца и алюмосиликатов кальция и магния.

Присутствие отсева строительных отходов от разборки зданий, в данной композиции расширяет интервал спекания и увеличивает прочность образцов.

Пример конкретного выполнения

Дозируют и подвергают помолу в шаровой мельнице до остатка на сите 0.08 не более 1% кембрийскую и латненскую глины, формоотход - отход от сталелитейного производства на основе кварцевого песка, череп, доломит. Дозируют полученную тонкомолотую смесь в бетономешалку. Дозируют жидкое стекло плотностью 1.4-1.5 г/см 3 и отсев строительных отходов от разборки зданий с $M_{\rm k\,p}$ =2.7, на 80% состоящий из боя тяжелого бетона на гранитном щебне. Приготавливают термоизоляционную массу, смешивая отдозированные компоненты в бетономешалке в течение 3-5 минут.

Жаростойкая термоизоляционная масса используется для изготовления изделий требуемой формы и образцов для проведения физико-механических испытаний методом литья или набивки.

Твердение термоизоляционной массы осуществляется в течение 24 часов в нормальных условиях. Затвердевшие образцы вынимают из форм и сушат при температуре 100-110°С. Высушенные образцы готовы к эксплуатации.

Для определения прочности образцы, отформованные вручную в формах размером 160×40×40 мм, сушили при температуре плюс 100°С до влажности 4-6% и обжигали при максимальной температуре плюс 1000°С с выдержкой не менее 1 часа. После обжига определялся предел прочности образцов при сжатии по ГОСТ 8462-85. Состав и свойства термоизоляционной массы представлены в таблице 2.

При получении термоизоляционной массы заявляемого состава используются побочные продукты строительной промышленности, что благоприятно сказывается на экологической обстановке, а также снижает себестоимость продукции.

Термоизоляционная масса, характеризуемая физико-механическими характеристиками, указанными в таблице 2, может быть использована для изготовления теплоизоляционных изделий, с температурой применения до плюс 1150°C.

Анализируя данные таблицы 2 можно сделать вывод, что термоизоляционная масса характеризуется повышением прочности на 20% по сравнению с прототипом, что расширяет диапазон применения массы и достигается попутный эффект утилизации

отходов. В аблица 7

10

15

20

25

30

35

40

50

Состав и свойства термоизоляционной массы

			Гермоизоляционная масса, состав, мас.%	ционная мас	са, состав,	мас.%			
№ п/п	Жидкое стекло p=1,4-1,5 г/см³	Гранули- рованный шлак	Отсев строительных отходов от разборки	Кембрийская глина	пэдэР	тимопоД	Латненская типта	дохтоомдоФ	Прочность при сжатии, МПа
Прототип	32,0 - 37,0	46,0 -	1	7,0 - 8,0	0,8-1,0	2,2-3,0	3,5-	3,5-	10,5-10,8
_	28,0	1	50,0	8,5	1,2	3,3	4,5	4,5	12,9
2	29,0	1	51,0	8,0	1,1	3,15	4,0	3,75	12,7
3	30,0	1	52,0	7,5	1,0	3,0	3,5	3,0	12,6

Формула изобретения

Термоизоляционная масса, содержащая кембрийскую глину, огнеупорную глину, череп, доломит и формоотход - отход от сталелитейного производства на основе кварцевого песка, совместно молотые до остатка на сите 0,08 не более 1%, жидкое стекло плотностью 1,4-1,5 г/см 3 , отличающаяся тем, что дополнительно содержит отсев строительных отходов от разборки зданий с $M_{\rm kp}$ =2,7, на 80% состоящий из боя тяжелого бетона на гранитном щебне, при следующем соотношении компонентов, мас.%:

жидкое стекло плотностью 1,4-1,5 г/см 3	28,0-30,0
отсев строительных отходов от разборки зданий	
с $M_{\kappa p}$ =2,7, на 80% состоящий из боя тяжелого	
бетона на гранитном щебне	50,0-52,0
кембрийская глина	7,5-8,5
огнеупорная глина	3 5-4 5

RU 2 497 773 C1

формоотход - отход от сталелитейного производства на основе кварцевого песка 3,0-4,5 доломит 3,0-3,3 череп 1,0-1,2