Use of heat pumps in brick drying

For a brickworks with a production rate of 400 tonnes per day fired ware, the mixing water content of around 20 mass% necessary for pressing means that every day around 80 t water must be expelled from the green products and evaporated. At an energy demand of 4000 kJ/kgH2O, that corresponds to an energy equivalent of approximately 9000 m³ natural gas/day and it therefore constitutes the biggest energy loss stream in the brickworks.

The energy fed to the dryer usually consists of the enthalpy stream, of the hot air extracted from the cooling zone of the tunnel kiln. Energy is supplied to the dryer at the expense of the fuel fed to the kiln.

Combined heating incorporating the cooling zone network brings energy disadvantages in plants in which production only runs five days a week. Here too the air from the kiln is available on seven days. Corresponding to the weekly shares, up to 30 % losses from this co-energy result and that is when the cooling zone network supplies the entire dryer energy. A reduction of this combined air quantity, e.g. with the hot air being used extensively in the kiln process, leads first to an energy bottleneck in the energy supply to the dryer in the second half of the week, when the energy demand is highest.

Reduction of the specific energy necessary for drying can be achieved first with an increase in the heat and material transfer between the dryer atmosphere and drying products, and second with the optimization of the interaction of ambient air, supplied air and waste air situation. Following this optimization, subsequent use of the dryer waste heat by means of recuperation is feasible. Problematic, however, is the low temperature of the air made available. If it is possible to recover the condensation heat present in the humid waste air and bring the air to a higher temperature level with the help of a heat pump, recovery of the energy from the drying process is possible. Owing to the different waste air situations, a differentiation must be made between continuous and chamber dryers. The IZF is working together with five other German institutes and the University of Ghent, Belgium, on a possible solution.

Dipl.-Ing. Eckhard Rimpel, Institut für Ziegelforschung Essen e.V.


Related articles:

Issue 11/2012

Waste heat utilization and integrated energy supply in brick and tile factories

When, as a result of increasing energy prices, the costs incurred for the energy-intensive process steps of drying and firing rise, measures for energy saving and the economically efficient use of...

Issue 06/2013

Utilization of Waste Heat and Combined Energy Systems in Brick Plants

1 Introduction Owing to the combination of the heat systems of dryer and kiln, the dryer often remains undetected as the major consumer of energy in a brick plant. For the most part, the installation...

Issue 8/2015 Prof. Dr.-Ing. Christian Schäffer

Combined kiln-dryer heating systems with thermochemical heat storage

1 Introduction In Zi Brick and Tile Industry International 7/2015, the concept of a brickworks with a “hybrid-ring tunnel kiln” was presented, in which the kiln cooling/dryer combined heating system...

Issue 7/2015 Prof. Dr.-Ing. Christian Schäffer

Hybrid-ring tunnel kiln with flue-gas-based combined heating system: 65% savings on energy – a concept study

1 Introduction The concept begins by dissolving the kiln/dryer combined heating system, instead supplying the dryer with energy via exergetically optimized heat flow from the kiln exhaust and power...

Issue 2/2015 Steffen Hauschel

Combined heat and power generation in the brick and tile industry – savings potentials through innovative dryer heating

1 Introduction In ceramic production, the high energy expenditures for operating the kiln and drying the wares are a crucial cost driver. In Germany, the financial burden of rising outlays for energy...